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Abstract. This paper focuses on precise energy consumption prediction 

through AI-driven models using time series data. Addressing data quality 

and model selection challenges, we conduct thorough data analysis, 

rectifying missing values, and normalizing inputs. Leveraging LSTM due to 

its efficacy in capturing temporal dependencies, we surpass existing 

limitations. Experimental outcomes validate our approach, accentuating the 

significance of data analysis, highlighting LSTM's relevance for precise 

consumption forecasting. These findings inform effective energy 

management strategies across domains. 
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1        Introduction  

Energy consumption is a pressing concern with far-reaching implications for the 
economy, environment, and society at large. Meeting the escalating energy demand 
necessitates smarter, more sustainable management techniques. Artificial 
Intelligence (AI) and Machine Learning (ML) models offer promising avenues for 
tackling this challenge, ushering in innovative solutions for predicting and 
analyzing energy usage [1]. 

Recent times have witnessed a surge in enthusiasm among researchers and 
practitioners for integrating AI and ML models into the realm of energy 
consumption. These models find application across diverse energy-centric domains, 
spanning energy demand projection, consumption optimization, and efficiency 
enhancement. Their deployment has markedly enhanced the accuracy of energy 
consumption forecasts, empowering energy enterprises to optimize resource 
utilization and curtail wastage. 
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The potential of ML models in foreseeing energy consumption patterns is notably 
exciting [2]. They hold the potential to reshape energy administration 
fundamentally, proffering precise, streamlined resolutions. As technology 
advances, these models have matured, capably managing intricate energy usage 
trends and foreseeing future patterns. This positions them as invaluable assets for 
prudent energy management, judicious decision-making, waste mitigation, and 
bolstering energy efficiency. 

This paper delves into the challenges tied to data quality and model selection within 
energy consumption prognosis, employing an AI model tailored for time series 
data. The exploration centers on how this model can enrich energy management 
strategies and contribute to a sustainable energy future. The objective is to furnish a 
comprehensive comprehension of Machine Learning model deployment, 
pinpointing prospects and obstacles for effective integration. 

2        State of the Art 

Several studies have delved into forecasting electricity consumption using various 
techniques and approaches. Hadjout et al [3] introduced an ensemble-based model 
leveraging deep learning techniques to predict monthly electricity consumption for 
Algeria's economic sector. Their model integrated LSTM, GRU, and CNN, and 
was assessed using a chronological dataset from 2000 clients spanning 14 years of 
monthly electricity consumption in Bejaia, Algeria. The findings revealed the 
proposed model achieved a MAPE of 3.04% and an RMSE of 60.66. 

Shakouri and Sahed [4] proposed an electricity consumption forecasting model 
based on artificial neural networks (ANN) for Algeria's annual consumption 
prediction. Their model employed a feedforward neural network architecture with 
backpropagation algorithm. Evaluating the model on a multivariate dataset from 
Algeria's electrical system, the results indicated a MAPE of 0.033. 

Bezzar et al [5] introduced a data analysis-driven time series forecasting approach 
for managing domestic electricity consumption. They presented an XGBoost model 
addressing challenges like inappropriate model selection and unanalyzed time 
series datasets. Experimental results on the Individual Household Electricity Power 
Consumption (IHEPC) dataset showcased the superiority of their proposed model 
over various ST and/or AI-based models in the literature, achieving RMSE and 
MAPE of 0.229 and 0.026, respectively. 

Kim and Cho [6] proposed a CNN-LSTM neural network model to predict 
residential energy consumption. Trained and tested on the publicly available 
"individual household electricity power consumption" (IHEPC) dataset, the model 
achieved a MAPE of 32.83, MSE of 0.3549, RMSE of 0.5957, and MAE of 0.3317. 

Han et al [7] introduced an effective deep learning framework for intelligent energy 
management in IoT networks. The proposed framework combined LSTM and CNN 
models for energy consumption forecasting, evaluated using the PJM dataset. 
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Results demonstrated the framework achieved MSE and RMSE of 0.15 and 3.77, 
respectively. 

Khan et al [8] proposed an efficient short-term electrical load forecasting model for 
effective energy management. Their hybrid deep learning approach was evaluated 
on the publicly available PJM dataset, achieving a good performance with an 
RMSE of 3.4. 

Mujeeb and Javaid [9] introduced two novel approaches, ESAENARX and DE-
RELM, for predictive analysis of large volumes of load and electricity price data. 
These approaches employed data analysis techniques like regression, clustering, 
and classification to forecast energy consumption and prices. Evaluated on the 
publicly available PJM dataset, these approaches outperformed reference models in 
terms of MAPE and RMSE, with values ranging from 1.08 to 5.24. 

Gao et al [10] proposed a multi-block-based prediction engine for price and load 
forecasting. This engine used a hybrid approach combining different neural 
network combinations, tested under similar prediction conditions to showcase their 
capabilities. Evaluated on the publicly available PJM dataset, the engine 
demonstrated high performance with an RMSE of 1.14 and a MAPE of 0.49. 

3        Contribution 

The goal of our work is to design an intelligent system capable of predicting hourly 
electrical energy consumption based on the hourly energy consumption database 
from the PJM website, which is known in related research works. The structure of 
the proposed model is depicted in Figure 1. 

 

Figure 1.  Proposed methodology 
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3.1        Dataset 

The dataset utilized in this study consists of hourly energy consumption data 
spanning over 15 years, sourced from "PJM Interconnection LLC (PJM)," a US-
based organization managing residential electrical transmission. The data is 
publicly accessible on the PJM website under the "CC0: Public Domain" license. It 
represents a significant resource of hourly energy consumption in megawatts 
(MW), available on Kaggle [11] [12] . This dataset is particularly valuable for our 
research due to its relevance, substantial size, and widespread availability. It has 
been extensively used in academia, making it a reliable and benchmark-worthy 
source for data preprocessing, analysis, and forecasting techniques. 

3.2        Data preprocessing  

1) Data Cleaning: As the initial phase of our work, we scrutinize the dataset 

to identify any occurrences of missing values, zeros, duplicates, or outliers. Our 

dataset does not encompass any nulls or duplicates requiring treatment. By 

pinpointing and addressing any potential issues, we can enhance the accuracy and 

reliability of our analysis. 

2) Data Decomposition :Time series decomposition is a method used to break 

down a time series into its components, such as trend, seasonality, and residuals, 

while also assessing the stationarity of the time series. Analyzing the time series 

data is crucial to estimate and distinguish all present components, emphasizing 

their impact on the overall behavior of the time series. 

The trend graph of our dataset is presented in Figure 2 (a). The trend component 
represents the long-term movement of the data. The graph provides insights into 
energy consumption, showing an increase during hot and cold periods and a slight 
decrease during other periods. Also in Figure 2 (a), the consumption pattern differs 
based on the considered duration. Over a longer period (such as several years), the 
consumption trend isn't a straight line but a curve, indicating a nonlinear 
relationship between time and consumption. This means that the rate of 
consumption change varies over time and isn't constant. However, over a shorter 
period, the consumption trend appears as a straight line, indicating a linear 
relationship between time and consumption. This suggests a constant and 
predictable rate of consumption change during this shorter period. 

Figure 2 (b) illustrates the seasonality component. The seasonality component 
represents the regular pattern of data that repeats over a fixed period, such as daily, 
weekly, monthly, or yearly. Seasonality can be positive or negative, indicating 
whether data tends to be higher or lower during specific periods. This information 
can be useful for understanding and predicting future electricity consumption 
values. 
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Figure 2 (c) displays the residuals. Residuals represent the unexplained variation in 
the data that cannot be attributed to the trend or seasonality components. They are 
the random and unpredictable fluctuations in the data. 

 

Figure 2.  Decomposition of the time series (Trendency, seasonality and residues) 

3.3        Feature Engineering 

1) Feature Extraction : Feature extraction from time series involves 

extracting relevant information or features from time series data. The goal is to 

identify and capture patterns, trends, or other characteristics within the time series 

that can be used in prediction tasks. Effective feature extraction techniques can 

enhance the accuracy and efficiency of these models. 

This process holds significant importance in any data science project involving 
machine learning. The chosen features serve as input to the learning model utilized. 

We extracted the following features from our data: 

• Hour: values of the day's hour (00:00=0, 23:00=24) for each data point. 

The time of day can be useful for identifying daily trends in the data, such as    
activity spikes at certain times of the day. 

• Dayofweek: week: values of the day of the week (Monday=0, Sunday=6) for each 
data point. The day of the week can help capture weekly trends in the data, such as 
consumption changes during weekdays versus weekends. 

• Quarter: values of the year's quarter (1-4) for each data point. The quarter of the 
year can be useful for identifying seasonal trends in the data, such as increased 
consumption at different times of the year. 

• Month: values of the year's month (1-12) for each data point. The month of the 
year can also be useful for identifying seasonal trends in the data. 

• Year: values of the year (2004-2018) for each data point. The year can be useful 
for identifying longer-term trends in the data, such as gradual changes in consumer 
behavior over time. 
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• Dayofyear: values of the day of the year (1-365 or 1-366) for each data point. The 
day of the year can be useful for identifying cyclic trends in the data, such as 
energy consumption changes related to shifting seasons. 

 

Figure 3.  Features extraction 

2) Data Normalization : data normalization is crucial to ensure a consistent 

scale across different variables within a time series and mitigate the impact of 

outliers. The Min-Max scaling is a common method, mapping features to a fixed 

range [0, 1]. Min-Max normalization is performed using the following formula: 

�̂� = (𝑥 - 𝑥𝑚𝑖𝑛) / (𝑥𝑚𝑎𝑥 - 𝑥𝑚𝑖𝑛) 

Here, 𝑥 represents the value of the feature we are normalizing, while 𝑥𝑚𝑖𝑛 and 
𝑥𝑚𝑎𝑥 respectively denote the smallest and largest observed values for that feature 
[5]. 

3.4        Dataset Splitting 

Data was split into training and testing sets during the study. Figure 4 depicts the 
division of data into training and testing sets, based on the time series of 01-01-
2015. As a result, the training and testing set split ratio was approximately 70-30%. 

 

Figure 4.  Dataset splitting 
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3.5        Model Selection 

Our LSTM model consists of a total of four layers: The first layer is an LSTM layer 
with 40 memory cells, serving as the initial input layer, expecting sequential data 
with a sequence length and seven features. This layer processes the input sequence, 
captures temporal dependencies, and generates output sequences. Following the 
first LSTM layer, a dropout layer is added to mitigate overfitting, randomly setting 
a fraction (10%) of input units to zero during training. This regularization technique 
enhances the model's ability to generalize to unseen data. 

The second layer is another LSTM layer with 40 memory cells, mirroring the 
architecture of the first LSTM layer. Its purpose is to further process sequential 
information and generate output sequences. It is succeeded by another dropout 
layer to alleviate overfitting. 

The third layer is the final LSTM layer of the model, also comprising 40 memory 
cells. However, unlike the previous two LSTM layers, this layer does not return 
sequences. Instead, it summarizes the information learned from the sequence and 
produces a single output. Once again, a dropout layer is included after this layer for 
regularization. 

The last layer is a dense layer with a single unit, performing a linear transformation 
on the input and producing a single output value. This layer acts as the model's 
output layer and is responsible for generating predictions based on the patterns 
learned from sequential data. 

3.6        Model Evaluation 

In the context of energy consumption forecasting, having an accurate predictive 
model is crucial. Therefore, assessing model performance using measures that 
effectively capture forecast accuracy and precision is essential. Through a 
combination of RMSE, MAE, MAPE, and R², we can comprehensively evaluate 
model performance and pinpoint areas where it might underperform. RMSE is 
valuable when larger errors impact overall performance more than smaller errors. 
MAE is useful when all errors, whether big or small, equally influence overall 
performance. MAPE is beneficial when evaluating model performance in terms of 
percentage errors. R² indicates how well the LSTM model fits the prediction 
problem. Employing multiple evaluation metrics provides a holistic view of the 
model's strengths and limitations, allowing us to leverage this information for 
performance enhancement. 

These outcomes highlight the robustness and reliability of our LSTM model in 
electricity consumption prediction. The low RMSE value signifies predictions 
closely align with actual values, while high MAPE and MAE indicate precision 
with minimal errors. Moreover, the elevated coefficient of determination (R²) at 
0.96 indicates our model's capacity to explain 96% of the observed variance in the 
data. These encouraging observations instill strong confidence in employing our 
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LSTM model for accurate electricity consumption forecasts, holding significant 
potential for energy resource planning and optimization. 

3.7        Results & Discussion 

Upon analyzing Figures 5, it is evident that our LSTM model exhibits remarkable 
capability in making accurate predictions, closely tracking real data points. 

 

Figure 5.  Prediction results with LSTM on the test set 

Model performance on the testing set can be evaluated using various metrics: an 
RMSE of 0.03, MAPE of 0.08, MAE of 0.02, and a coefficient of determination 
(R²) of 0.96, as shown in Figure 6. 

 

Figure 6.  Performance of our LSTM model 

To ensure a focused and concise comparison, we will exclusively evaluate the 
performance of our LSTM model in relation to studies that have used the same 
dataset as ours. 

The table below illustrates the performance comparison of our model with previous 
works, using performance metrics such as RMSE, MAPE, MAE, and R². 
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Analyzing the results, it's evident that the work [3] demonstrates a high RMSE of 
60.66, indicating considerable prediction error compared to other studies. 
Conversely, our model achieves an impressively low RMSE of 0.03, suggesting 
high accuracy in energy consumption prediction. 

In terms of MAPE, our model achieves a result of 0.08, significantly lower than 
most previous works. The work [9] presents the highest MAPE of 1.09, indicating 
greater deviation from other models. Concerning MAE, our model achieves a very 
low result of 0.02, showcasing high precision in energy consumption predictions. In 
contrast, work [6] has the highest MAE of 0.3317, signifying a larger absolute error 
compared to other studies. 

Lastly, the coefficient of determination (R²) assesses the proportion of variance in 
the data explained by the prediction model. Our model demonstrates an exceptional 
R² coefficient of 0.96, implying excellent capability in explaining energy 
consumption variation compared to other models. 

This comparative analysis compellingly highlights the superior performance of our 
model over prior works. The attained results indicate high accuracy, low error, and 
a strong ability to explain energy consumption variation. These performances 
enhance the credibility and effectiveness of our energy consumption prediction 
model within the context of our contribution. 

 

Figure 7.  Comparison with related works 

4        Cocnlusion & Perspectives  

This study delves into the utilization of an AI model for predicting energy 
consumption, specifically employing time series data and the Long Short-Term 
Memory (LSTM) model. Our aim was to address existing limitations in the 
literature related to data quality and model choice. We conducted a thorough data 
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analysis to ensure input data reliability, opting for the LSTM model due to its 
prowess in handling sequential problems. 

Through our research, we have made notable strides in accurately forecasting 
energy consumption. Performance evaluation metrics, including Root Mean Square 
Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error 
(MAE), and Coefficient of Determination (R²), indicate strong model performance 
and dependability. Notably, we achieved exceptional outcomes with RMSE = 0.03, 
MAPE = 0.08, MAE = 0.02, and R² = 0.96, effectively showcasing the efficacy of 
our approach. 

By surmounting challenges related to data quality and model selection, we have 
contributed to the field of energy consumption prediction. Our research underscores 
the significance of meticulous data analysis and highlights the pertinence and 
efficacy of LSTM models in achieving precise energy consumption forecasts. The 
findings of our study hold noteworthy implications for energy management, 
resource allocation, and informed decision-making across diverse domains. 

Subsequent work will be geared towards refining model accuracy, exploring their 
application in developing nations, and examining the influence of data quality on 
model performance. We are confident that these advancements will foster an 
improved grasp of and application of machine learning models in the realm of 
energy demand forecasting. 
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